• Users Online: 78
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2019  |  Volume : 6  |  Issue : 2  |  Page : 76-84

Modulation of oxidative stress by doxorubicin loaded chitosan nanoparticles


Department of Zoology, K. M. College, University of Delhi, Delhi, India

Correspondence Address:
Dr. Anita Kamra Verma
Department of Zoology, K. M. College, University of Delhi, Delhi - 110 007
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/JCRP.JCRP_18_18

Rights and Permissions

Purpose of the Research: Chitosan nanoparticles (CHNP) are being used to modulate the generation of reactive oxygen species (ROS), as unwarranted generation of ROS can damage proteins, lipid membranes, and DNA of host cells. CHNP possess exceptional abilities to modulate antioxidants and suppress oxidative stress damage caused by the CHNP themselves in normal cells. Methods and Results: CHNP were prepared by ionic gelation in the size range of ~115 nm, with a polydispersity index of 0.365. Doxorubicin (DOX) was encapsulated in CHNP with entrapment efficiency ~48%. The modulation of free radicals and antioxidative enzymes by DOX-loaded CHNP (DLCHNP) was evaluated. The glutathione s-transferase and glutathione levels induced by DLCHNP were lower in Ehrlich ascites carcinoma cells(EACs) cells (6.60 ± 0.02 nM/min/mg protein and 0.92 ± 0.05 nM/min/mg protein, respectively) compared to void CHNP and DOX per se decreased levels of nitric oxide and superoxide dismutase (0.03 ± 0.001 nMoles and 28.84 ± 0.016 Unit/mg protein), elevated levels of GSSG (11.69 ± 0.004 nM/min/mg protein), marginally reduced levels of GSH reductase (1.87 ± 0.002 Unit/mg protein), reduced levels of GPx (31.35 ± 0.022 Unit/mg protein) and significantly enhanced levels of LPO (1.56 ± 0.01 nMoles/mg protein) indicated cellular damage. As observed in DNA fragmentation assay, void nanoparticles did not show any DNA damage whereas DLCHNP caused significant damage. Enhanced gene expressions of Cyt. C and p21 on EACs cells was observed in DLCHNP-treated cells compared to DOX per se. Conclusion: CHNP were not efficient in generating remarkable oxidative stress, but when coupled with a drug (i.e., DLCHNP) severe damage was caused to the cancer cells compared to the free drug. This indicated the potential of our encapsulated nanoparticles in drug delivery.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed149    
    Printed2    
    Emailed0    
    PDF Downloaded20    
    Comments [Add]    

Recommend this journal